Tipologia di moduli e pannelli

TIPI DI PANNELLI

celle fotovoltaiche in silicio monocristallino: 

il silicio a cristallo singolo, o monocristallino, è ottenuto da un processo detto di melting a partire da cristalli di silicio di elevata purezza che, una volta fusi, vengono fatti solidificare a contatto con un seme di cristallo. Durante il raffreddamento, il silicio gradualmente si solidifica nella forma di un lingotto cilindrico di monocristallo del diametro di 13 ¸20 cm, con una lunghezza che può  raggiungere  i200 cm. In un momento successivo, il lingotto viene tagliato con speciali seghe a filo, in fettine dette wafers con spessore di 250 ¸350 mm

– celle fotovoltaiche in silicio policristallino:

in alternativa al silicio monocristallino, l’industria fotovoltaica utilizza anche il silicio policristallino che ha costi di produzione inferiori e nel quale i cristalli si presentano ancora aggregati tra loro ma con forme e orientamenti differenti. L’affinamento del processo produttivo delle celle di silicio policristallino consente ormai di realizzare celle con prestazioni elettriche solo di poco inferiori rispetto a quelle di silicio monocristallino

– celle fotovoltaiche in silicio amorfo: 

è stato il primo e l’unico film antagonista del cristallino per tutti gli anni ’80 e ’90. Dal lancio sul mercato ad oggi la tecnologia amorfa è quella che ha realizzato i maggiori progressi sviluppando soluzioni sofisticate ed attenuando molti dei suoi problemi tecnologici: a questo proposito, va considerato che proprio negli anni ’90 lo sviluppo del cristallino ha avuto un naturale rallentamento dovuto alla necessità delle industrie di recuperare parte degli investimenti di ricerca del decennio precedente. A differenza della tecnologia cristallina nella quale il materiale semiconduttore si presenta solido in forma di wafers con spessore di qualche centinaio di micron, in questo caso la materia attiva può essere ottenuta il forma di gas con il vantaggio di poter essere depositata in strati spessi pochi micron e su di una grande varietà di superfici di appoggio. Il contenuto utilizzo di silicio rispetto al cristallino è quindi in linea con la limitata disponibilità di materiale attivo ottenuto come scarto dell’industria elettronica che si sta profilando all’orizzonte. Si possono così ottenere film di spessore totale pari a 1-2 millimetri, anche flessibili (per esempio, silicio amorfo depositato su una lastra di0,5 millimetridi alluminio) e leggerissimi. Purtroppo la natura stessa del silicio amorfo, che non presenta una struttura molecolare definita (a cristalli), limita notevolmente la prestazione elettrica in termini di efficienza che rimane ben al di sotto di quella del cristallino. Rimangono, in oltre da risolvere una serie di problemi legati alla stabilità delle prestazioni nel tempo. L’amorfo perde poco meno del 10% delle prestazioni di potenza dichiarate dal costruttore nelle prime 300-400 ore di esposizione. Questo comporta difficoltà: – nello stabilire a priori le vere prestazioni dell’impianto realizzato dopo il degrado iniziale; – confrontare economicamente, in termini di costi/prezzi dei moduli a watt, l’amorfo con altre scelte a pari potenza acquistata. L’aspetto estetico di questi moduli è decisamente attraente con la possibilità di realizzare moduli flessibili, e quindi prodotti prevalentemente ad uso architettonico o in sostituzione agli element edilizi.

– celle fotovoltaiche a film sottile:

sono composte da strati di materiale semiconduttore (non sempre è presente il silicio) depositati generalmente come miscela di gas su supporti a basso costo come vetro, polimero , alluminio che danno consistenza fisica alla miscela. La deposizione di un gas consente l’immediato beneficio di un utilizzo minore di materiale attivo: lo spessore si riduce da 300 micron delle celle cristalline a 4-5 micron di quella a film sottile. Inoltre, il processo produttivo dei film sottili consente una riduzione delle fasi di lavorazione che, oltretutto e a differenza del cristallino, possono essere automatizzate.

– celle CIS (Copper indium Diselinide) e CIGS (Copper Indium Gallinm diselinide):

queste celle utilizzano substrati di basso costo e processi di produzione facilmente automatizzabili e quindi idonei a produzioni di grandi volumi. Questi prodotti hanno dimostrato affidabilità nell’utilizzo in esterno e stabile efficienza nel tempo. Entrambe le tecnologie hanno dimostrato buone caratteristiche elettriche. I moduli CIS sono già presenti commercialmente. Il CIS viene alla ribalta del mondo fotovoltaico quando nel 1988 la prima cella da laboratorio raggiunge l’11% di efficienza. Nei sette anni di ricerca che seguirono i risultati stentavano ad arrivare e solo alcune soluzioni produttive brillanti a metà degli anni ’90 accelerarono lo sviluppo. Il CIGS, e ancora più recentemente il CIGSS (con l’aggiunta di zolfo) è un derivato che consente di aumentare l’efficienza elettrica di conversione. Nonostante la più intuitiva complessità di realizzazione, fortunatamente l’aggiunta di un composto nel mix di produzione ha consentito una maggior flessibilità del processo non gravando sui costi totali. Contrariamente a quanto accade per il silicio amorfo, la stabilità delle prestazioni in esterno del CIS-CIGS è notevole e prove in campo che durano da ormai 7 anni provano che non c’è degrado della potenza. Viceversa lo stato di maturità della tecnologia sul piano della uniformità di produzione (celle o moduli di simili caratteristiche elettriche) è ancora insufficiente. L’ingegneria chimico-fisica dei dispositivi CIS e CIGS è prevista con l’utilizzo di materiali di base piuttosto costosi anche se si ottengono buone prestazioni anche con materiali di qualità intermedia. La peculiarità di poter essere realizzate su substrati anche flessibili le rendono, in prospettiva, attraenti anche per gli usi architettonici.

– celle a film sottile in CdTe (Telloruro di Cadmio):

questi moduli sono un’altra nuova tecnologia oramai sulla via della commercializzazione. Linee di produzione sono in allestimento in questi anni negli Stati Uniti, mentre in Giappone già da anni si costruiscono piccole celle che equipaggiano le calcolatrici solari. Il materiale è un semiconduttore con caratteristiche vicine a quelle delle efficienti ma costose celle all’arseniuro di gallio (GaAs) realizzate per le applicazioni spaziali. Il processo costruttivo e tecnologicamente semplice e produce una cella con buone caratteristiche meccaniche di resistenza e reazione agli stress termici. Il processo tipico è definito “sublimazione in spazio chiuso” e permette la costruzione di celle con efficienze maggiori del 15%. La tipica cella CdTe è a quattro strati e tre giunzioni per migliorare le caratteristiche di assorbimento dello spettro solare, ma nonostante questo può essere realizzata con spessori molto ridotti che aiutano a contenere i costi. Sino al 1999 le migliori prestazioni erano state raggiunte con celle caratterizzate da uno strato attivo di soli 3.5micron, ma attualmente spessori di 5-10 micron sono alla portata delle nuove tecniche di produzione. I primi impianti fotovoltaici formati da moduli prototipo sono apparsi nei campi prova intorno ai primi anni ’90. l’efficienza massima ottenuta in laboratorio è stata del 16% su celle di 1 cm2 e del 10% su moduli prototipo.

– celle CIS (Copper indium Diselinide) e CIGS (Copper Indium Gallinm diselinide):

queste celle utilizzano substrati di basso costo e processi di produzione facilmente automatizzabili e quindi idonei a produzioni di grandi volumi. Questi prodotti hanno dimostrato affidabilità nell’utilizzo in esterno e stabile efficienza nel tempo. Entrambe le tecnologie hanno dimostrato buone caratteristiche elettriche. I moduli CIS sono già presenti commercialmente. Il CIS viene alla ribalta del mondo fotovoltaico quando nel 1988 la prima cella da laboratorio raggiunge l’11% di efficienza. Nei sette anni di ricerca che seguirono i risultati stentavano ad arrivare e solo alcune soluzioni produttive brillanti a metà degli anni ’90 accelerarono lo sviluppo. Il CIGS, e ancora più recentemente il CIGSS (con l’aggiunta di zolfo) è un derivato che consente di aumentare l’efficienza elettrica di conversione. Nonostante la più intuitiva complessità di realizzazione, fortunatamente l’aggiunta di un composto nel mix di produzione ha consentito una maggior flessibilità del processo non gravando sui costi totali. Contrariamente a quanto accade per il silicio amorfo, la stabilità delle prestazioni in esterno del CIS-CIGS è notevole e prove in campo che durano da ormai 7 anni provano che non c’è degrado della potenza. Viceversa lo stato di maturità della tecnologia sul piano della uniformità di produzione (celle o moduli di simili caratteristiche elettriche) è ancora insufficiente. L’ingegneria chimico-fisica dei dispositivi CIS e CIGS è prevista con l’utilizzo di materiali di base piuttosto costosi anche se si ottengono buone prestazioni anche con materiali di qualità intermedia. La peculiarità di poter essere realizzate su substrati anche flessibili le rendono, in prospettiva, attraenti anche per gli usi architettonici.